Other pages in this section

Forecasting corrosive ocean conditions for shellfish growers in Washington

Sorting oysters at an aquaculture facility.

For people who make their living connected to nature, a favorable environment is critical. For farmers, that means having enough rain to bring a crop to harvest. For ski resort operators, that means having enough snow for a robust ski season. For commercial fishermen, that means having seasonal ocean temperatures that favor the fish they need for market.

The same goes for shellfish growers in Washington, who rely on the Northwest’s historically favorable marine waters to help produce delectable invertebrates, like clams and oysters.

But because nature is variable, and because the global ocean’s chemistry is changing from absorbing vast amounts of carbon dioxide that drives ocean acidification, marine waters along our coast and in Puget Sound are often corrosive and harmful to shellfish. This creates a significant barrier to shellfish growers and the success of their business, especially the production of young oysters in hatcheries. Hatcheries have lost oysters when especially corrosive waters are drawn in from the nearby ocean. Losses in hatchery production can threaten the viability of the industry.

In order for the shellfish industry to respond to this threat, improved information is critical. To address this problem, the Washington Ocean Acidification Center, part of UW EarthLab, has provided resources for monitoring seawater in hatcheries and has developed a tool that provides forecasts of ocean conditions. The tool allows growers to see when conditions are favorable for the tiny oysters and clams, which are especially vulnerable when young. Knowing about corrosive water conditions helps hatchery managers improve production and helps growers choose favorable periods to move the young oysters from the hatchery to the seabed.

“This innovative work results in payoffs to our scientific understanding of ocean acidification in Washington waters and has direct, practical benefits to society as well. By evaluating modeled forecast ocean conditions against data, scientists can continually improve our understanding of processes. Making the forecasts publicly available enables growers to use it much the same as a weather forecast is used, to inform decisions,” said Jan Newton, co-director of the Washington Ocean Acidification Center.

To develop the model, the Washington Ocean Acidification Center worked with a team of scientists, modelers and others to support the adaptation of an existing computer model, LiveOcean. They added ocean properties for the Washington coast and Puget Sound, including ocean chemistry and ocean acidification variables that shellfish growers monitor and use. Parker MacCready, from the University of Washington’s School of Oceanography, led the modeling group and worked with shellfish growers to learn their interests and needs from a model.  The forecasts are available now for the outer coast and will soon be so for Puget Sound, and are available to the public forecasts are available to the public by the Northwest Association of Networked Ocean Observing Systems.

Ocean acidification is a worldwide problem, driven by increased carbon dioxide in the atmosphere that is absorbed by the ocean. At times, these waters become harmful to shelled organisms like oysters and some plankton, preventing them from forming or maintaining their shells. Although ocean acidification is a global problem, it is made worse in the Pacific Northwest by local circulation patterns and other factors, such as naturally high organic production. Many partners have come together across the Pacific Northwest to address the problem. For example, the Washington state Marine Resource Advisory Council makes recommendations to the Governor’s office and state legislature to guide responses to ocean acidification. The Washington Ocean Acidification Center and EarthLab are committed to approaches such as this that use emerging science to address societal needs.